

Electrochemical and computational methods as a combined approach to study redox enzymes

Andrea Fasano¹, Federica Arrigoni¹, Lara Callea¹, Vincent Fourmond², Luca Bertini¹, Christophe Léger², Luca de Gioia¹

E-mail: andrea.fasano@unimib.it

¹ Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, 20126, Italy

² Laboratoire de Bioénergétique et Ingénierie des Protéines CNRS, Aix Marseille Université, Marseille 13402, France

Keywords: Redox enzymes; O₂ inhibition; Quantum mechanics; Protein film electrochemistry

Redox enzymes such as hydrogenases and CO dehydrogenases (CODHs) catalyze hydrogen production/oxidation and CO/CO₂ redox conversion, respectively, at unique inorganic active sites, buried within the protein structure. Understanding their functioning is crucial to enlighten how nature evolved the ability to catalyze such reactions, and to use those enzymes in biotechnological devices, or as inspiration for inorganic catalysts design¹. Protein film electrochemistry (PFE) follows the activity of redox enzymes as a current, which can be quantitatively interpreted through detailed kinetic modelling. This provides information on the steps of the catalytic cycle² and on the rates of small molecule (e.g. molecular oxygen) inhibition³. However, PFE lacks structural information about the chemical species that are formed throughout catalysis, or during inhibition reactions. This information can be obtained with computational techniques, such as Quantum Mechanical (QM) calculations⁴, which allows simulating the reaction steps of both the catalytic cycle or the reaction with inhibitors.

In particular, O₂ inhibition and reactivation of CODHs are poorly understood mechanisms. Moreover, enzymes from different organisms react with O₂ in different manners, despite the 1st coordination sphere of the active site being very conserved. Using PFE, I show that O₂ inhibits CODHs incredibly fast, and in a competitive manner, binding the same site as the substrate CO (manuscript in preparation). In my current project, I aim at using QM calculations and Molecular dynamics simulations to investigate the chemical steps that follow O₂ binding at the active site of CODHs and how the protein structure controls the chemistry of O₂ inhibition and reactivation in different CODHs.

1. Fasano, A., Fourmond, V. & Léger, C. Outer-sphere effects on the O₂ sensitivity, catalytic bias and catalytic reversibility of hydrogenases. *Chem. Sci.* **15**, 5418–5433 (2024).
2. Fasano, A. *et al.* Kinetic modeling of the reversible or irreversible electrochemical responses of FeFe-hydrogenases. *J. Am. Chem. Soc.* **146**, 1455–1466 (2024).
3. Fasano, A. *et al.* A chimeric NiFe hydrogenase heterodimer to assess the role of the electron transfer chain in tuning the enzyme's catalytic bias and oxygen tolerance. *J. Am. Chem. Soc.* **145**, 20021–20030 (2023).
4. Breglia, R. *et al.* First-principles calculations on Ni,Fe-containing carbon monoxide dehydrogenases reveal key stereoelectronic features for binding and release of CO₂ to/from the C-cluster. *Inorg. Chem.* **60**, 387–402 (2021).