P68 #BtBsDayP68

Exploring the metabolic signature of Amyotrophic Lateral Sclerosis patientsderived cells

<u>Vulcano Edvige</u>¹, Perciballi Elisa ⁴, Lombardi Ivan¹, Carletti Rose Mary⁶, Bovio Federica¹, Matilde Forcella¹, Rosati Jessica⁶, Gelati Maurizio⁴, Profico Daniela⁴, Fusi Paola¹, Vescovi Angelo Luigi ^{6,7}, Ferrari Daniela¹

E-mail: e.vulcano@campus.unimib.it

¹ Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy;

⁴ Fondazione IRCCS Casa Sollievo della Sofferenza, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), San Giovanni Rotondo, Italy;

⁶ Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy;

⁷ Link Campus University, Rome, Italy.

Abstract:

Amyotrophic lateral sclerosis (ALS) is a relentlessly fatal neurodegenerative disease characterized by a selective degeneration of upper motor neurons in motor cortex and lower motor neurons in brainstem and spinal cord, leading to rapid paralysis and death¹. To date, the pathogenesis is largely unknown and effective therapies still lacking.

A massive amount of evidence shows the pivotal role of abnormalities in energy metabolism and mitochondrial dysfunction in ALS, suggesting a strong association between mitochondria metabolism disorder and neurodegeneration^{2,3}.

Here, we are elucidating the metabolic profile of patients-derived in vitro models of ALS aiming to obtain a more in-depth understanding of metabolism in health and disease and to provide a platform to unravel the pathological mechanisms underpinning ALS. Defining the role of the impaired metabolism might identify novel therapeutic targets and design innovative treatments for ALS patients.

¹ Brown et al., (2017), Amyotrophic Lateral Sclerosis, doi: 10.1056/NEJMra1603471.

² Tefera et al., (2021), doi: 10.1186/s13578-020-00511-2.

³ Vandoorne et al., (2018), doi: 10.1007/s00401-018-1835-x