

Redox-mediated causal connection between ferroptosis and aging in *Caenorhabditis elegans*: a role for *fard-1* and *dhs-25*

Roberta Pensotti¹, Barbara Sciandrone¹, Federica Bovio¹, Laura Schröter², Silvia Maglioni², Leonie Thewes⁵, Matilde Emma Forcella¹, Paola Alessandra Fusi¹, Andrea Rossi², Carsten Berndt⁵, Natascia Ventura², Maria Elena Regonesi¹ *E-mail: r.pensotti1@campus.unimib.it*

¹Department of Biotechnology and Biosciences BtBs, University of Milano-Bicocca, Milan, Italy ²Leibniz Research Institute for Environmental Medicine IUF, Düsseldorf, Germany ⁵Department of Neurology, Heinrich Heine University, Düsseldorf, Germany

Keywords: aging, ferroptosis, redox homeostasis, frataxin, oxidative stress, antioxidant systems, lipid peroxidation, *Caenorhabditis elegans*

Abstract:

Aging is a natural process characterized by a progressive physiological decline that undermines health and well-being in the elderly population¹. It is widely accepted that an unbalanced redox state belongs to the hallmarks of aging, but its role as one of the main drivers of ferroptosis is quite recent². Ferroptosis is a form of iron-dependent cell death caused by massive phospholipid peroxidation, triggered by the excessive accumulation of intracellular ROS and the failure of the main cellular antioxidant systems³. While roles for ferroptosis in pathological conditions have been described, its physiological roles and regulators are less clearly understood.

Here, using *Caenorhabditis elegans* as a powerful model organism for aging studies, we uncover a role for ferroptosis in physiological aging mediated by disturbed redox homeostasis. We evaluated healthspan parameters in a wild-type strain highlighting how different age-related features differentially decline during aging. A progressive loss of the capability to contrast external stressors, with an increase in hydroxyl radicals and a failure of the glutathione antioxidant system demonstrated the progressive disruption of redox homeostasis in older age. Moreover, we showed that selected genes involved in redox metabolism are downregulated with aging. Among them, knocked out strains of the fatty acyl-CoA reductase, *fard-1*, and of the dehydrogenase, *dhs-25*, displayed higher sensitivity to a ferroptosis inducer, increased lipid peroxidation, anticipated drop in total glutathione and reduced lifespan. Accordingly, the expression of one of the closest mammalian *dhs-25* homolog, the hydroxysteroid 17-Beta Dehydrogenase 8, was downregulated in cells which are more sensitive to ferroptosis due to altered mitochondrial redox homeostasis.

Our results clearly prove a causal role of ferroptosis in *C. elegans* aging driven by oxidative stress, unveiling novel genes involved in this connection that may constitute targets for future interventions to improve healthy aging.

- 1. Tartiere AG, Freije JMP, López-Otín C. Front Aging 2024; 5: 1334261.
- 2. Schiavi A et al. iScience 2023; 26: 106448.
- 3. Dixon SJ, Olzmann JA. Nat Rev Mol Cell Biol 2024; 25: 424–442.