

Molecular Dynamics Investigation of O₂ Diffusion Mechanisms in the Protective CbA5H Hydrogenase

Mattia P. Fossati¹, Jacopo Vertemara¹, Federica Arrigoni¹, Giuseppe Zampella¹, Luca Bertini¹, Luca De Gioia¹

E-mail: m.fossati28@campus.unimib.it

¹ Department of Biotechnology and Biosciences, Univ. degli Studi Milano-Bicocca, Milano, IT

Keywords: Biocatalysis, [FeFe]-Hydrogenase, Molecular Dynamics, O₂-protection, H₂-production.

Abstract: [FeFe]-hydrogenases are efficient biocatalysts for hydrogen conversion but are generally very sensitive in the presence of O₂; no [FeFe]-hydrogenase are known to function in the presence of O₂, some are reversibly inhibited (O₂-sensitive), while others are irreversibly destroyed (O₂-labile).

The *Clostridium beijerinckii* [FeFe]-hydrogenase (CbA5H) shows an O₂-protecting mechanism that is unique, forming an inactive but rapidly reversible state upon O₂ exposure. Experimental data suggests that the TSC-loop adopts a conformation that allows the cysteine residue (C367) to complete the electronic configuration of the distal iron atom in the H-cluster. However, the mechanism by which O₂ molecules reach the active site is less known. In this work we aim to investigate this process using advanced molecular dynamic simulations including unbiased molecular dynamic and random accelerated molecular dynamics (RAMD) to explore possible diffusion pathways within the protein. The RAMD technique will provide insights the timescales and diffusion rates associated to O₂ migration toward the active site (H-cluster) or [4Fe-4S]-clusters, contributing to a deeper understanding of the CbA5H's protective mechanism against O₂ damage.

The insights gained may support protein engineering effort for developing biocatalytic applications of O₂-tolerant [FeFe]-hydrogenases for sustainable H₂ production.