

Expanding *Kluyveromyces marxianus* synthetic biology toolbox for streamlining natural dyes cell factories construction

Antonia Pacaccio^{1,2}, Pietro Butti^{1,2}, Valeria Mapelli¹, Paola Branduardi¹, John P. Morrissey²

E-mail: a.pacaccio@campus.unimib.it

¹IndBioTech Lab, Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy

²School of Microbiology, University College Cork, Cork, Ireland

Keywords: *Kluyveromyces marxianus*, chassis strains, metabolic engineering, natural dyes, tryptophan

Abstract:

Kluyveromyces marxianus is a promising yeast industrial host that has lately drawn attention as a chassis for bioprocesses also based on second generation feedstock due to its thermotolerance, fast growth rate and capability to use a wide range of substrates. Thanks to these characteristics, *K. marxianus* was used to successfully generate chassis strains for the production of tryptophan-derived, violacein-related pigments to be used as natural dyes. Nevertheless, some synthetic biology limitations blocked the strain optimization and, more generally, represented an important limit to *K. marxianus* chassis use. Specifically, the shortage of integration sites at chromosome level and selection markers is a key limitation. We developed a bioinformatic routine to ease the search for new integration sites and designed new parts for marker-free cloning with the final aim of streamlining *K. marxianus* use and accelerating the genetic manipulation process. The systems developed are being implemented on violacein-related producing chassis to assess their effectiveness.