

Investigation of Ca²⁺-dependent pathogenic mechanisms in Arrhythmogenic Cardiomyopathy associated to a PKP2 mutation

Florindi C.¹, Eskandr M.¹, Maniezzi C.¹, Sala L.², Maione A. S.³, Lodola F.¹, Pompilio G. ³, Zaza A.¹

E-mail: c.florindi@campus.unimib.it

¹ Laboratory of Cardiac Cellular Physiology, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy;

² Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Cusano Milanino, Italy

³Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy

Keywords: arrhythmogenic cardiomyopathy, plakophilin-2, intercalated disc, cardiac desmosomes, molecular mechanisms, humans pluripotent stem cells

Abstract

Background: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by contractile deficit, myocardial remodeling and fibro-fatty infiltration. ACM is often related to mutations in genes encoding for proteins of the desmosomal complex such as plakophilin-2 (PKP2) encoded by *pkp2* gene. PKP2-mediated ACM impacts on cardiomyocytes (CMs), leading to electrical and contractile dysfunction, and on mesenchymal stromal cells (MSCs) that undergo fibro-adipose substitution. The latter may impair electrical conduction.

Aim of the project: The aim is to characterize the pathogenetic mechanism of the disease associated with the PKP2 mutation in CMs and MSCs.

Materials and methods: Human induced pluripotent stem cells differentiated into CMs (hiPSC-CMs) and 2D microtissue models of hiPSC-CMs and MSCs have been used. Mutant preparations (Mut) were compared to isogenic wild-type (WT) ones. Alterations in Ca²⁺-handling have been first evaluated in CMs by using epifluorescence analysis and then abnormalities in contractility have been analyzed in microtissues by exploiting Muscle Motion, a software that allows to evaluate and quantify the cardiac contractile function.

Results and conclusions: Preliminary results indicates that the Ca²⁺ transients' amplitude was decreased in Mut CMs compared to WT. Furthermore, we will analyze contractility dysfunction comparing WT and Mut 2D microtissue. Also, we will investigate alterations in Ca²⁺ dynamics and electrical conduction as possible pathogenetic mechanisms related to PKP2-mediated ACM.