

COUP-TFII regulates hemoglobin switching by activating the BCL11A-XL repressor LIN28B and directly binding δ and β globin promoters in fetal versus adult erythroid cells

Carlotta Frigo^{1*}, **Valentina Pastori**^{1*}, **Gianluca Zambanini**^{2,3,4*}, **Martina Fabiano**¹, **Sajeela**

Ahmed¹, **Elisabetta Citterio**^{1,5}, **Claudio Cantù**^{2,3,6^} and **Antonella E. Ronchi**^{1^}

E-mail: c.frigo1@campus.unimib.it

¹ Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy.

² Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.

³ Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.

⁴ Present address: Max-Planck-Institut für molekulare Genetik, Berlin, Germany.

⁵ Department of Life Science, Health, and Health Professions, LINK Campus University, Rome, Italy.

⁶ Science for Life Laboratory – SciLifeLab, Linköping University, 58185 Linköping, Sweden

* Co-First Authors

^ Co-Corresponding Authors

Keywords: Erythropoiesis, Transcriptional regulation, Hemoglobin switching, CUT&RUN

Abstract:

The reactivation of fetal globin genes is the most promising treatment for β -hemoglobinopathies. This implies the reversal of the naturally occurring haemoglobin switching.

Here, we show that expression of the orphan nuclear receptor COUP-TFII in adult HUDEP2 erythroid precursor cells activates γ -globin (HbF) at the expense of β -adult globin by specific occupation of the “adult” δ - β -region within the β -locus.

Notably, although COUP-TFII and the main γ -globin repressor BCL11A-XL share a similar DNA binding consensus and a large number of chromatin targets, including the locus control region of the β -locus itself, they bind differentially to the γ and β promoters, eliciting an opposite transcriptional outcome.

In addition, we find that COUP-TFII activates LIN28B, a known post-transcriptional repressor of BCL11A-XL. Our work identifies a molecular mechanism that could be leveraged to increase γ -globin levels in patients affected by β -hemoglobinopathies.